The Future of Human Evolution

Alexander R.
Prof. Kohn
Darwinism and Evolution

Evolution, the science of how populations of living organisms change over
time in response to their environment, is the central unifying theme in biology
today. Evolution was first explored in its semi-modern form in Charles Darwin \'s
1859 book, Origin of Species by means of Natural Selection. In this book, Darwin
laid out a strong argument for evolution. He postulated that all species have a
common ancestor from which they are descended. As populations of species moved
into new habitats and new parts of the world, they faced different environmental
conditions. Over time, these populations accumulated modifications, or
adaptations, that allowed them and their offspring to survive better in their
new environments. These modifications were the key to the evolution of new
species, and Darwin proposed natural selection or "survival of the fittest" as
the vehicle by which that change occurs. Under Natural Selection, some
individuals in a population have adaptations that allow them to survive and
more than other individuals. These adaptations become more common in the
population because of this higher reproductive success. Over time, the
characteristics of the population as a whole can change, sometimes even
resulting in the formation of a new species. Humans have survived for thousands
of years and will most like survive thousands of more. Throughout the history
of the Huminoid species man has evolved from Homo Erectus to what we today call
Homo Sapiens, or what we know today as modern man.. The topic of this paper is
what does the future have in store for the evolution of Homo Sapiens. Of course,
human beings will continue to change culturally; therefore cultural evolution
will always continue; but what of physiological evolution? The cultural
evolution of man will continue as long as man can think; after all it\'s the
ideas we think up that makes up our cultures. In a thousand years man might
complete a 180 degree turn culturally (not to mention physiologically) and as
seen by our fellow inhabitants of earth we would in essence be different beings.
One can say that this new culture has chosen its ideas based on Natural
Selection. One can see this in the spread of ideas in the past history of homo
sapiens, the ideas which cause man to succeed are chosen such as science and
democracy (the present growth of Islam is also worthy of mention, but would be a
paper in itself). Lamarck\'s fourth law, that is, ideas acquired by one
generation are passed on to the next, describes this transfer of ideas from one
generation to another.
The question is can humans evolve (physically), that is through changes
of some sort to the general human gene pool, enough to be considered a different
species sometime in the future. The answer to this is tricky. The answer is
"yes" if there is no human intervention and "not likely" (or atleast controlled)
if there is human intervention. The more interesting answer is the latter. The
first answer deserves some mention. Through the subtraction or addition (that
is through chance changes of some sort) of alleles (different forms of a
characteristic gene) from the overall gene pool until homo sapiens are no longer
is feasible. One might ask how and were this is occurring. The answer is human
genes are changing all the time through radiation and spontaneous mutations (the
latter more rapidly no than ever since the human population is now larger than
ever) and one can see these changes to the overall gene pool in the
disappearance of certain human tribes within parts of Africa and South America..
These tribes unfortunately take exclusive alleles with them. What about Natural
Selection in present human culture. Some peoples are growing faster than others,
for example-Chinese faster than any other in the present world, thus the large
Chinese population. Therefore some group traits ae more common than others. Yet
the loss of these alleles and the gain of these mutations offer marginal
contributions to our species and thus have little or no effect.
The first step in understand evolution in present terms is to mention
genetic engineering (including genetic drift). The first step to understanding
genetic engineering, and embracing its possibilities for society, is to obtain a
rough knowledge base of its history and method. The basis for altering the
evolutionary process is dependant on the understanding of how individuals pass
on characteristics to their offspring. Genetics achieved its first foothold on
the secrets of nature\'s evolutionary process when an Austrian monk named Gregor
Mendel developed the first "laws of heredity." Using these laws, scientists
studied the characteristics of