Choas Theory In Biology

Chaos In Biological Systems
In today’s world of high-tech methods to study just about anything that exists, we are still imperfect. Scientists continue to look for ways to understand, explain, and even predict the actions and reactions of the universe. In the last two centuries, scientists have been looking in every possible place to understand the universe; from science, to math, even religion. They have turned to mathematicians and their strange theories of determinism and predictability. This search to understand the universe has spawned several new areas of science; there are now scientists devoted solely to the research of mere theories, such as chaos theorists.
In the twentieth century, a new area of scientific study has been created. The goal of this new science is to turn the study of real life into a more easily understood, and more mathematical formula. This new science is called Ecology. Ecology is defined as “the science of relationships between organisms and their environments” (American Heritage Dictionary). Ecologists are, in large, generally biologists with a strong mathematical basis. This is not to say that all ecologists are also mathematicians, but the math background is a major part in the ecological studies. Scientists, by nature, have always tried to make the most complex things in the universe seem as simple as possible.
“Scientists have always searched for simple rules, or laws, that govern the Universe. For example, Isaac Newton could explain how the stars appeared to move across the sky with his simple laws of motion and theory of gravitation. At the beginning of the 19th century, the famous French mathematician Pierre Simon LaPlace believed firmly in a Newtonian universe that worked on clockwork principles. He proposed that if you knew the position and velocities of all the particles in the Universe, you could predict its future for all time.” Hall 7
This new science is yet another attempt to do such a task. But, in this case, scientists have hit a few snags. In order to make a biological system into a simple, predictable formula, you must be able to count and measure every factor within that system. In ecology, however, this is nearly impossible. Because ecologists focus their studies on the relationships between organisms and their environment, everything that has an effect must be considered. This ranges from each individual organism in that environment, to the weather and climate, to how much of a ripple was formed when the leaf fell off the tree and into the water. As one can imagine, this is impossible. Because it is so difficult to make this idea neat and clean, scientists try even harder to do so. Most ecologists believe that by being able to understand and predict a biological system, we can foretell how fast and large any given population of organisms will grow and expand (Clarke 1-19).
In the 1970’s, scientists also developed another science, called Chaos Theory. This is theory that attempts to explain how and why the universe is deterministic yet unpredictable. This means that in most systems, scientists can foretell what should happen, but not to what extent changes will continue. Chaos Theory is a very strange and misleading science. Many people take it to believe that chaos means total disorder, whereas in the science, it has a totally different meaning. Some people believe that the entire purpose of such a science is simply to explain our own inabilities to understand. Understand what? Anything and everything in this universe, this includes weather, astronomy, and how a raindrop will roll down a leaf. Scientists use this science to explain planetary motion, pendulums, and many other moving objects. Using this newfound science of Chaos, ecologists were able to make mathematical models to represent a biological system. For instance, using a certain mathematical formula, we’ll say nnext= F (x), ecologists could make a graphical representation of a population and its fluctuations (Gleick 59). This occurs because when every iterations and its solutions are plotted on a graph, it forms a fluctuating, and sometimes chaotic graph.
“In the natural system of a rain forest, a co-evolutionary system depicted by a rubbery fitness landscape, the success of one species (such as a frog) may spell doom for another (a fly) that it prefers to dine on. Kauffman has claimed that the