Blaise Pascal was born at Clermont, Auvergne, France on June 19, 1628.

He was the son of Étienne Pascal, his father, and Antoinette Bégone, his mother

who died when Blaise was only four years old. After her death, his only family

was his father and his two sisters, Gilberte, and Jacqueline, both of whom

played key roles in Pascal\'s life. When Blaise was seven he moved from

Clermont with his father and sisters to Paris. It was at this time that his

father began to school his son. Though being strong intellectually, Blaise had

a pathetic physique.

Things went quite well at first for Blaise concerning his schooling.

His father was amazed at the ease his son was able to absorb the classical

education thrown at him and "tried to hold the boy down to a reasonable pace to

avoid injuring his health." (P 74,Bell) Blaise was exposed to all subjects, all

except mathematics, which was taboo. His father forbid this from him in the

belief that Blaise was strain his mind. Faced with this opposition, Blaise

demanded to know ‘what was mathematics?\' His father told him, "that generally

speaking, it was the way of making precise figures and finding the proportions

among them." (P 39,Cole) This set him going and during his play times in this

room he figured out ways to draw geometric figures such as perfect circles, and

equilateral triangles, all of this he accomplished. Due to the fact that É

tienne took such painstaking measures to hide mathematics from Blaise, to the

point where he told his friends not to mention math at all around him, Blaise

did not know the names to these figures. So he created his own vocab for them,

calling a circle a "round" and lines he named "bars". "After these definitions

he made himself axioms, and finally made perfect demonstrations." (P 39,Cole)

His progression was far enough that he reached the 32nd proposition of Euclid\'s

Book one. Deeply enthralled in this task his father entered the room un-noticed

only to observe his son, inventing mathematics. At the age of 13 Étienne began

taking Blaise to meetings of mathematicians and scientists which gave Blaise the

opportunity to meet with such minds as Descartes and Hobbes. Three years later

at the age of 16 Blaise amazed his peers by submitting a paper on conic sections.

His sister was quoted as having said "that it was considered so great an

intellectual achievement that people have said they have seen nothing as mighty

since the time of Archimedes." (I:Pascal) This was his first real contribution

to mathematics, but not his last. Note:

www.nd.edu/StudentLinks/akoehl/Pascal.html

Pascal\'s contributions to mathematics from then on were surmasing. From

a young age he was ‘creating science.\' His first scientific work, an essay on

sounds he prepared at a very young age. Once at a dinner party someone tapped a

glass with a spoon. Pascal went about the house tapping the china with his fork

then dissappeard into his room only to emerge hours later having completed a

short essay on sound. He used the same approach to all of the problems he

encountered; working at them until he was satisfied with his understanding of

the problem at hand. A few of his disocoveries stood out more then others, of

them his calculating machine, and his contributions to combinatorial analysis

have made a signifigant contribution to mathematics.

The mechanical calculator was devised by Pascal in 1642 and was brought

to a commercial version in 1645. It was one of the earliest in the history of

computing. ‘Side by side in an oblong box were places six small drums, round

the upper and lower halves chich the numbers 0 to 9 were written, in decending

and ascending orders respectively. According to whichever aritchmatical process

was currently in use, one half of each drum was shut off from outside view by a

sliding metal bar: the upper row of figures was for subtraction, the lower for

addition. Below each drum was a wheel consisting of ten (or twenty of twelve)

movable spokes inside a fixed rim numbered in ten (or more) equal sections from

0 to 9 etc, rather like a clockface. Wheels and rims were all visible on the

box lid, and indeed the numbers to be added or subtracted were fed into the

machine by means of the wheels: 4 for instance, being recorded by using a small

pin to turn the stoke opposite division 4 as far as a catch positioned close to

the outer edge of the box. The procedure for basic arithmatical process

Acceptable files: .txt, .doc, .docx, .rtf

Copyright © 2017 Digital Term Papers. All Rights Reserved.