Antimmatter

Really long Physics paper
We stand at the base of a new age. We are just now beginning to learn the intricate details of life, both macroscopic and microscopic. Ultimately these discoveries will benefit all of mankind. Never before have we enjoyed such a golden age for science and discovery. The scientific horizon looks fruitful. One such fruit is the discovery and application of a thing called antimatter. During the next few decades our ability to produce, accumulate, and contain large quantities of antimatter should become feasible, leaving us just to research possible uses for this promising, radically new, form of energy.
Antimatter is exactly what the name suggests. It is the opposite of matter in which the charges associated with electrons and protons are switched. This means a proton and antiproton are attracted to each other. When they collide pane energy is produced in the form of three pions and four gamma rays.
Since their discovery in 1955, antiproton production rates have increased by approximately an order of magnitude (which is one exponential increase) every 2.5 years as seen in fig. 1. It is predicted that a milligram to a gram of antimatter could be produced annually within the next decade. At present the main hinderence to antimatter production is the ability to accumulate, cool, and decelerate the antiprotons.
Antimatter production is a relatively easy concept, but the details are mind bogeling. In 1932, Carl Anderson, was examining tracks produced by cosmic rays in a cloud chamber. One particle made a track like an electron, but carvature of its path in the magnetic field was one consistent with a possitive charged particle. He named this new particle a positron. Later, in the 1950’s, physicists at the Lawrence Radiation Lab used the Beratron accelerator to produce the anti-proton. Upon examination of this particle they found that it had the same mass and spin as a proton, but with negative charge and opposite magnetic moment. The process they used to create this particle with first to accelerate a proton to a very high speed, and then smash it into a target. This collision produces an antiproton and three protons, or in other words a proton antiproton pair and the two original protons. This seems to suggest that for each antiproton produced, there is one proton. This would sugget whole other worlds made of antimatter. However, this is a whole other debate.
Now, the main problem with this process is accumulation, cooling, and deceleration, as already mentioned. Once the collision has taken place the products are moving at high speeds with large amount of kinetic energy. It requires large amounts of energy to accelerate the proton, and even more to decelerate and cool the products. Accumulation brings up another problem, which is storage.
Antimatter is more reactive then any other substance ever created because it will react with any form of matter. So, storage must keep it from colliding with other particles. Currently, storage is limited to electromagnectic confinement using large magnetic rings to accelerate the protons at low speeds in a vaccumn. This type of storage is costly and cannot hold large amounts of antiprotons or positrons. Due to this impediment, antimatter is only stored for short amount of time (hours) before it is used in experiments. However, there are two new ideas for forms of storage. The first is for bulk storage. This process implies storage at extreme low temperatures in a vacuum. The second way is called dispersed storage, where antimatter is stored in a uniform mix with normal matter. In both cases the antimatter can be stored in the form of a single charged particle (antiproton) or as a antihydrogen neutral molecule.
Another simple, and obvious, way to prevent antiprotons from reacting with the walls of a storage vessel is to electrically charge such walls to repel the particles. Intense studies on storage devices such as these are underway using normal matter ions. This type of storage device is known as an ion trap. This is a good intermediate holding device for antimatter because it allows time for the particles to be cooled and decelerated. The Japanese have created traps that can hold 10 to 1016 antiprotons. However, these traps would be so large, that they would require huge amounts of energy. Although, the future is